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An efficient transfer matrix technique is introduced to study directed optimal paths in two and three dimen-
sions. The roughness exponent ¢ is 0.6325%0.0007 for the two-dimensional case and {=0.555%0.008 for the
three-dimensional one, in agreement with the recent conjecture {=v, /v, where v, and v are the correlation
length exponents of directed percolation. Exactly solvable examples are also analyzed.
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The problem of directed polymers (DP’s) in random me-
dia [1] has recently attracted much attention because of its
possible connections with other systems, such as domain
walls in random ferromagnets [2], interface growth [3], and
directed percolation (for a review see Ref. [4]). In particular,
it is well known that the domain wall geometry in weakly
disordered ferromagnets, the dynamics of growing interfaces
governed by the Kardar-Parisi-Zhang (KPZ) [3] equation and
DP’s in a weakly disordered landscape are related to each
other in two dimensions via the Burgers equation [4,5].
However, there are many physical systems where, in the con-
sidered length scales, the weak disorder approximation is not
appropriate. This happens when physical features have a
broad distribution and we will refer to this situation as the
strong disorder case [6]. It has been shown that in this limit
the self-affine domain walls become fractally rough with sig-
nificant overhanging configurations, thus leading to a new
universality class [7—9]. The nondirectedness of the domain
wall configurations in the strong disorder limit makes it clear
that the weak disorder connection with DP’s is lost. Then the
question arises about the behavior of DP’s in a strongly dis-
ordered landscape and about the influence of the constraint
of directness on the universality class [7].

The directed optimal path problem is defined in a
(d+1)-dimensional lattice, where a random energy e, is as-
signed to each bond and is independently distributed all over
the lattice. The energy of a directed path g (steps occur along
bonds which have a positive projection on the (1,1...,1)
direction) is defined as

E(p)=2 €. 6))
bep

If the distribution is very broad, a useful approximation is to
assume that the sum of variables from the distribution is
simply equal to the largest one. Then the energy in Eq. (1)
becomes

E,(p)=max,.,€. 2

The definition (2) allows us to deal with a broad distribu-
tion of disorder in the thermodynamic limit. In fact, choosing
(1), any distribution of the disorder flows under renormaliza-
tion to a Gaussian, corresponding to the weak disorder limit
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[2]. The ground state configuration is then the one corre-
sponding to the path that minimizes expression (2), and it is
called the optimal path, with energy E . [7,8,10]. By defini-
tion, when two paths have the same energy E., the one
which has the lower second maximum is considered to be
optimal. If the paths are still degenerate the next maximum
has to be analyzed and the procedure must be repeated until
the degeneration is completely removed.

Recently, Roux and Zhang [11] gave an argument stating
that the optimal path lives on a directed percolation cluster,
and that the ground state energy corresponds to the bond
percolation threshold. Moreover, due to degeneracy argu-
ments, they claimed that the characteristic exponents should
also correspond to those of directed percolation. Our aim is
to show both analytically and numerically that this is the
case.

We now show that on the Bethe lattice and on hierarchical
lattices the directed percolation thresholds and the energy of
the optimal path coincide. The key of the proof is to find the
proper quantities to be analyzed. For directed percolation this
quantity is the probability P of a site to be connected to the
infinite percolating cluster. On the Bethe lattice bonds are
oriented from a generation to the next one. Two sites are
connected if an oriented path of occupied bonds joins them.
Then, calling p the probability that the bond is occupied, the
self-consistency equation for P is

P(p)=1-[1-pP(p)I~! 3)

where z is the number of nearest neighbors on the lattice.
From this equation it can be found that the percolation
threshold is p.=1/(z—1). [Notice that this threshold is the
same as in the case of ordinary (undirected) percolation
[13].] In the case of the optimal path the key quantity is the
probability of a path with an energy less than E to propagate
ad infinitum, never traversing bonds of higher energy. As-
signing a uniform random energy between 0 and 1 to each
bond, the self-consistency equation we get for the path is the
same as for percolation, just changing the probability p that
a bond is occupied with the energy E of the path; then of
course the energy of the optimal path (the smallest energy for
which there is a nonzero probability of propagation) is equal
to the percolation threshold. The identification of the propa-
gation probability as the key one to study the optimal path is
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FIG. 1. Hierarchical lattices considered in this paper and corre-
sponding to (a) d=2 and (b) d=3.

very important, because it can be used also on the diamond
hierarchical lattice [12] shown in Fig. 1. In fact, we can
perform an exact renormalization group on this lattice: the
probability that a path of energy less than E propagates
through a bond must be the same as the probability of propa-
gating through the diamond.

In view of comparing our numerical results for
d-dimensional cubic lattices, we perform a general renormal-
ization group (RG) transformation where the single bond has
to be substituted by an N-sided diamond, where N=29"1
(see Fig. 1). Then we can write a general expression for the
RG equation for the probability p(E) that a bond has an
energy less than E. The renormalized probability is then

p'(E)=1-[1-p*(E)]¥ 4)

with initial condition p(E)=E.

This is exactly the same recursion as the one for p for
directed percolation (which again is the same as ordinary
percolation) on these lattices. For d=2 and d=3 we find
E.=0.6180... and E.=0.2818..., respectively (notice
that in the limit d — E_.~1/N, a behavior different from
the Bethe lattice result which is the correct one at order
1/d? with z=2d).

We now discuss the numerical simulations on square and
cubic lattices using transfer matrix techniques. We explain
the algorithm on a two-dimensional lattice, its generalization
to any dimension being straightforward. In Fig. 2 a portion
of the lattice is shown, where the diagonal represents the
time axis. We are interested in the optimal path connecting a
site at t=1¢; to an arbitrary site at time ¢;>¢;. Rows ¢ and
t+1 of the lattice (Fig. 3) are connected by 2¢ bonds, and a
uniform random value between O and 1 is assigned to them.

FIG. 2. Directed square lattice used for numerical simulations.
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FIG. 3. Detail of the square lattice.

The energies of the optimal paths connecting each site of row
t+1 to a site of the top line are obtained via the following
algorithm:

E;=min[max(E;,€;;), max(E,e€;)] (5)

where E;, E, are the energies of the optimal paths connect-
ing the first row to sites i and k, respectively; €;; and €, are
the energies of the bonds linking sites i and j, k, and j
respectively. Assigning a zero energy to the sites of the first
row, and then applying the algorithm (5), the frue optimal
path energy is the minimum of the energies of the sites of the
last row. In order to obtain a homogeneous set of data, we
have performed our simulation by keeping fixed the ratio
ty/t; between the final and the initial row. For computational
convenience we have chosen ¢;/¢;= 1000 and ¢; ranging from
10<¢;<300 in d=2 and ¢;/¢t;=10 and 10<¢;<50 for
d=3. We have analyzed the nonlinear sequences E .(¢;) with
standard extrapolation techniques [e.g. Brezinski’s 6
algorithm [14,15], Bulirsch and Stoer technique (BST) algo-
rithm [16,15]] and we obtained E,=0.6447+0.0001 in two
dimensions and E_.=0.291%£0.002 in three dimensions.
These results are in good agreement with the best estimates
existing in the literature: p.=0.644 701=0.000 001 [17,18]
in d=2 and p.=0.287 30=0.000 06 [19] in d =3.

We also investigate the roughness properties of the opti-
mal path, defined as the end-to end perpendicular displace-
ment of the path. A major difficulty in this case is that the
path characterized by the energy (2) is highly degenerate, so
that it is not possible to doubtless identify the end-to-end
displacement of the optimal path. The sources of degeneracy
are the so called neckties, where the incoming path, with
energy E, finds more than one way to go to the bottom line
without increasing its energy. One way out of this problem
could be to compare the second, third energy maxima, and so
on, choosing the frue optimal path as the one with the lowest
maxima at any order.

A modification of the previously described algorithm of
the transfer matrix, consisting of a backward scan of the
lattice [20], allows one to implement a very efficient way to
avoid the problem of the high degeneracy.

In the new algorithm a two-dimensional vector is assigned
to each site i: the first entry E; is the energy of the optimal
path from that site to the bottom and the second one, X; is the
transverse coordinate of the extremum of the optimal path at
the final time.

The procedure starts at the bottom of the lattice where
at the generic site i the energy E; is chosen to be 0 and
X;=x;, the transverse coordinate of the site i itself. Then the
updating of the vector assigned to a generic site k at time
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FIG. 4. Log-log plot of the wandering of the optimal path vs the
final time in d=2.

t is done in terms of the two vectors associated with sites /
and j at time ¢+ 1, shown in Fig. 3, according to the rules

Ek:min[maX(Ej >€jk)7maX(El 7511()]’ (6)

X, if E=E;

X,=
Kl x, if E.=E,.

()

This procedure gives the optimal path from each site
at time ¢; to the final time ¢;. For simplicity we let the
algorithm go with the time step A¢r=1. The genuine Roux-
Zhang conjecture states that the optimal path lives on the
directed percolation cluster on an infinite lattice, which
was the asymptotic situation for the threshold calculation
setup. The setup for the calculation of the roughness is some-
what different, and the optimal path can be seen as having a
fixed extreme. If the fixed extreme lies on the percolation
cluster, then the Roux-Zhang argument is valid; else the path
travels until it meets the directed percolation cluster: from
there on it never abandons it. As a consequence, apart from
an initial transient, the roughness of the path is bounded by
the width of the percolating cluster. The energy, instead, is in
general greater than or equal to its true value, due to an
initial regime before contact with the percolation cluster is
made, so that it will be different from the percolation thresh-
old.

Using the above described algorithm, we are able to give
a very precise estimate for the roughness W of the path de-
fined as the transverse displacement of the optimal path at
time ¢. Given the scaling law for W

W~t¢, (€]

the exponent ¢ is related to the correlation length exponents
of directed percolation via the formula [11]

FIG. 5. Log-log plot of the wandering of the optimal path vs the
final time in d=3.

v,

{=—. ©

d(

Indeed in directed percolation, at the critical threshold p.,
the percolating cluster is anisotropic and characterized by
two correlation lengths, §“~| p—pc ", in the time direc-
tion, and &, ~|p—p.| " in the x direction [21]. Identifying
& with ¢ and £, with W we get (8) and (9).

Figure 4 shows the log-log plot of W versus ¢ up to
t=6000 for the two-dimensional case. From the best fit we
get {=0.6325*0.0007 to be compared with the best result
known [18] ¢=0.6326=*0.0002.

Figure 5 shows the corresponding data for d=3. In this
case {=0.555+0.008 is obtained (close even if not in agree-
ment as in the d=2 case to the previous results
{=0.567=*0.008 obtained in [19] using Monte Carlo simu-
lations).

In conclusion we have given quite convincing numerical
and analytical evidence that the directed optimal path [9] has
a roughness exponent related to correlation length indices of
directed percolation [11]. For this purpose an efficient trans-
fer matrix algorithm was necessary [20] which allowed ex-
cellent estimates of exponents within 0.01% and 0.2% in
d=2 and d=3, respectively. Since directed percolation has
an upper critical dimension d.=4 [22] we thus expect this is
also the case for the directed extremal optimal path (i.e.,
when d>d_., {=1/2 like standard random walks). Surpris-
ingly this seems also the case for directed polymers in the
weak disorder approximation [23,24].
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